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Abstract

The theoretical basis for the calculation of acid dissociation constants in the lowest excited singlet or triplet state of organic compounds
has been reexamined in light of a recent study on solvatochromism. A mathematical analysis based on the Onsager cavity model reveals
that the absorption or emission frequency of an acid and its conjugate base, as they appear in the Förster equation, should be replaced with
the averages of absorption and emission frequencies corresponding to the 0–0 transition of acid and base, respectively, in order to account
for Franck–Condon effects on the free energy balance. The free energy of spontaneous medium relaxation is found to be the same for
absorption and emission, and proportional to one-half of the Stokes shift.

The main premise of the proposed method, besides the obvious requirement that both the acid and its conjugate base should fluoresce
or phosphoresce, is that each excited state exists long enough for equilibrium with the medium to be established prior to emission.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The evaluation of acidity or basicity constants of excited
organic or inorganic compounds has been a topic of con-
tinued and growing interest among chemists and biologists
since the early 1950s[1–3].

The reasons are obvious. For example, the information
contained in the excited-state acidity constantK∗

a is very
useful in acquiring some insight into the redistribution of
electronic charge accompanying the transition.

In a more quantitative sense, knowledge ofK∗
a is nec-

essary in establishing Hammett correlations for different
substituted compounds, with a view to verify the applica-
bility of linear free energy relationships to excited states.
Experimental studies by Favaro et al.[4] and by Baldry
[5] on 4′-substituted 3-styrylpyridines, by Gnanasekaran
and coworkers[6] on 2,4-dinitrophenylhydrazones of sub-
stituted acetylbiphenyls and acetylfluorenes, or by Aaron
et al. [7] on substituted indoles, indeed seem to support the
generalisation of such relationships to include excited states.

A knowledge ofK∗
a is also prerequisite to determine rate

constants of protonation in the excited state, once the depro-
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tonation rate constant is known from quantum yield mea-
surements in decay experiments performed at different pH
[8].

Ground-state pKa values can be easily obtained, e.g., spec-
trophotometrically or potentiometrically.

The pK∗
a value can only be determined indirectly, how-

ever, since in most cases its value does not correspond to a
realistic, normally attainable state because the lifetimes of
excited states are usually much shorter than the time neces-
sary to establish acid–base equilibrium (the latter being typ-
ically on the order of 10−8 s), while quenching, especially
of the protonated form, may proceed at a much faster rate,
further hampering the equilibration process.

The most widely used method for obtaining pK∗
a is based

on a simple thermodynamic device known as a Förster cycle
[1] (seeFig. 1), which gives rise to the Förster equation
(seeSection 3, Eq. (19)). Other, more direct, methods are
fluorescence titration[9] (which uses the pH dependence of
the fluorescence intensities of both members of the conjugate
acid/base pair) and triplet–triplet absorption[3] (where an
acid or base in buffered solution is first promoted to the
lowest-lying triplet state by flash photolysis).

Although of these three, the Förster method apparently
is the easiest to apply, the literature exposes a persis-
tent confusion regarding the choice of the frequenciesνA
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and νB that are to be substituted in the Förster equation
[10].

Some authors prefer to use only the frequencies cor-
responding to the low-frequency maxima in the absorp-
tion bands of acid and base[6,11], while others use the
high-frequency maxima in the fluorescence (or phosphores-
cence) bands[12]. Most commonly, however, an averaging
of the frequencies of absorption and emission maxima of
acid and base separately is believed to yield the most reli-
able approximation toνA andνB, respectively[13].

This latter procedure is based on the expectation that av-
eraging will eliminate the solvent relaxation, or Franck–
Condon, effects that inevitably accompany absorption and
emission processes.

It is the aim of this paper to provide a more rigorous
theoretical basis for this approach, and outline its limitations.
The analysis of Franck–Condon corrections in the following
sections closely follows that given in a recent treatment of
solvatochromism[14] which, inter alia, takes into account
the effect of electrolyte on Stokes shifts, an aspect that will
prove equally pertinent to the present investigation.

2. Analysis of the Förster cycle: definition of standard
state

The Förster cycle is shown inFig. 1 for the case of a
monoprotic acid (A� B + H+).

Since we are interested in the pKa of the acid/base equi-
librium in the excited state, the appropriate thermodynamic
quantity in terms of which the cycle should be analysed is
the standard Gibbs energy (and not the enthalpy, as is usu-
ally seen in the literature).

First of all, it needs to be understood exactly what is
meant by “standard conditions” in the present context, as
the definition slightly departs from the usual convention.

In the case of an ionic speciesi that is also endowed with
a dipole moment, the standard state corresponds to a hy-
pothetical solution in which the ion is present at standard
concentrationcθ (e.g., 1 mol dm−3), while at the same time
ion–ion interactions with other ions in solution are thought
of as having been “switched off” (this could be brought

Fig. 1. The Förster cycle for a monoprotic acid at constant temperature,
pressure and ionic strength. Standard free energy changes are indicated
for the various stages of the cycle.

about by an imaginary discharging process). Interaction be-
tween ions is explicitly accounted for in the usual manner
via a termkT ln fi in the chemical potential (wherefi is
a single-ion activity coefficient), whereas deviations from
standard concentration are contained in the termkT ln(ci/cθ).
The chemical potential can thus be written as

µi = µ0
i + kT ln

(
fici

cθ

)
(1)

From the definition offi it follows that the standard chemi-
cal potentialµ0

i must contain a contribution due to electro-
static interactions between the dipole on an ion of typei and
the charges on the other ions (if dipole–dipole interactions
among solutes are neglected). It is therefore to be regarded
as a function, not only of temperature, but also of the ionic
strength,I, of the solution. With the definitions

�G0
a = µ0

B + µθ
H+ − µ0

A = 2.303kTpKa (2a)

�G0∗
a = µ0∗

B + µθ
H+ − µ0∗

A = 2.303kTpK∗
a (2b)

wA = µ0∗
A − µ0

A (2c)

wB = µ0∗
B − µ0

B (2d)

the standard free energy balance for the Förster cycle then
reads

�G0∗
a = �G0

a + wB − wA (3)

or, equivalently:

pK∗
a = pKa − wA − wB

2.303kT
(4)

Since it may be safely assumed that activity coefficientsfi
are independent of the electronic state of an ion, we can
setf ∗

i = fi. As a consequence, the corresponding terms in
Eq. (4) cancel, so thatKa and K∗

a can be taken to denote
concentration products for the given solution (i.e., at the
prevailing ionic strength,I). This is so because, in an actual
experimental situation, both ground and excited-state acids
and bases are present in the same electrolytic medium.

The quantitywA should be interpreted as a free energy
change, equal to the work of forming an excited-state acid
molecule or ion, characterised by a permanent dipole mo-
ment of magnitudeµ∗

p,A (not to be confused with the sym-
bol for chemical potential!), from its ground state which has
dipole momentµp,A. The termwB is defined similarly.

It would certainly be incorrect to identifyw with the quan-
tum of energyhν absorbed from the light source, because
the latter corresponds to a transition from the ground state
to an excited (Franck–Condon) state to which the medium
only responds via an instantaneous change in its electronic
polarisation. This is followed by a relatively slow relaxation
of solvent dipole moments and rearrangement of ions as
the medium adapts to the new dipole moment, leading to
a new equilibrium (provided the excited state survives long
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enough). This process is accompanied by a negative free en-
ergy change,�GFC, that has to be added tohν. Hence:

w = hν + �GFC (5)

In the next section, the different terms inEq. (5) will be
calculated separately, based on results obtained in a previous
study on solvatochromism in the presence of electrolyte.

3. Calculation of pK∗
a : connection with solvatochromic

shifts

Based on the definitions given in the preceding section,
w can be written as the resultant of three contributions (see
Fig. 2):

(i) The photon energyhν0, absorbed by the molecule or ion
if present in a vacuum. This transition is accompanied
by a change in dipole moment fromµp to µ∗

p.
(ii) The electrostatic stabilisation energy of the excited-state

dipole in solution:

w∗
el =

1

2
α∗E2

r (�µ∗) −
∫ �µ∗

0

�Er(�µ′) · d�µ′ (6)

whereα∗ is the (supposedly isotropic) polarisability of
the excited molecule, while�Er(�µ′) denotes the reaction
field of the medium acting on the dipole�µ′ in response
to its presence.

The first term on the right-hand side equals the work
of polarisation, the second term is the free energy of
the interaction between the dipole and its polarised en-
vironment.

In Ref. [14] it was shown that if, in accordance with
the classical Onsager model[15], the molecule is rep-
resented as a point dipole (possibly superimposed on

Fig. 2. Relationships among free energies for an absorption, emission,
relaxation cycle between the lowest vibrational levels of the electronic
ground state and first excited state (0–0 transition) of a single acid or base
molecule or ion. Dipole moments in the different states are also shown
(see text for an explanation of the symbols).

a charge) located at the centre of a spherical cavity of
constant radiusa [16], the reaction field is equal to

�Er(�µ) = 2�µ
4πε0a3

ε′ − 1

2ε′ + 1
(7)

whereε′ is an apparent dielectric constant that effec-
tively takes into account the contribution to�Er due to
the average redistribution of ions about the dipole:

ε′ = ε

(
1 + (κa)2/2

1 + κa

)
(8)

whereε is the dielectric constant of the solvent andκ

the reciprocal Debye length:

κ =
√

2F2I

εε0RT
(9)

whereF is the Faraday constant.
In derivingEq. (7), it had to be assumed thatI is not

too high, such as to keep the value ofκa well below 1.
(iii) The third contribution tow is the negative of the elec-

trostatic stabilisation energy of the ground-state dipole:

wel = 1

2
αE2

r (�µ) −
∫ �µ

0

�Er(�µ′) · d�µ′ (10)

with symbols defined analogously to those inEq. (6).

Thus

w = hν0 + 1

2
α∗E2

r (�µ∗) − 1

2
αE2

r (�µ) −
∫ �µ∗

�µ
�Er(�µ′) · d�µ′

(11)

In Eqs. (6), (10) and (11)andFig. 2, �µ and �µ∗ are the total
dipole moments in the ground state and excited state, re-
spectively, in equilibrium with their surroundings, whereas
in Fig. 2, �µ∗∞ and �µ∞ represent the dipole moments imme-
diately after absorption or emission of a photon with energy
hνa or hνf , respectively.

Using the relationship

�µ = �µp + α �Er(�µ) (12)

which is valid for the equilibrium ground state, and intro-
ducing the scaled polarisabilityα′ = α/4πε0a

3, it follows,
together withEq. (7), that

�µ = 2ε′ + 1

2ε′ + 1 − 2α′(ε′ − 1)
�µp (13)

and

�Er(�µ) = 2(ε′ − 1)

2ε′ + 1 − 2α′(ε′ − 1)

�µp

4πε0a3
(14)

If it can be assumed thatα∗ andα are approximately equal,
substitution ofEqs. (13) and (14)and the corresponding
expressions for the excited-state dipole intoEq. (11)yields

w = hν0 − µ∗2
p − µ2

p

4πε0a3

ε′ − 1

2ε′ + 1 − 2α′(ε′ − 1)
(15)
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Note that this result is valid whether or not the acid is ionic,
provided that dielectric saturation effects are negligible in
which case ionic and dipolar fields are independent and sim-
ply superimposed.

From the treatment of solvatochromic shifts in the pres-
ence of electrolyte[14], the following expression was ob-
tained for the energy difference between the ground state
and the lowest excited Franck–Condon state corresponding
to the 0–0 transition (seeFig. 2):

hνa = hν0 − �µ∗
p − �µp

4πε0a3
·
{

2(ε′ − 1)

2ε′ + 1 − 2α′(ε′ − 1)
�µp

+ (n2 − 1)(�µ∗
p − �µp)

2n2 + 1 − 2α′(n2 − 1)

}
(16)

wheren is the refractive index of the solution. In the case of
an emitting compound with a sufficiently long-lived excited
singlet or triplet state, the fluorescence or phosphorescence
energy is given by a similar equation:

hνf = hν0 − �µ∗
p − �µp

4πε0a3
·
{

2(ε′ − 1)

2ε′ + 1 − 2α′(ε′ − 1)
�µ∗

p

− (n2 − 1)(�µ∗
p − �µp)

2n2 + 1 − 2α′(n2 − 1)

}
(17)

ComparingEqs. (16) and (17)with Eq. (15) immediately
leads to the interesting result

w = h(νa + νf )/2 ≡ hc ¯̃ν (18)

introducing the symbol̃̄ν to denote the average of the ab-
sorption and emission wavenumbers.

Substitution ofEq. (18)into Eq. (4)produces the follow-
ing important relationship:

pK∗
a = pKa − hc

2.303kT
( ¯̃νA − ¯̃νB) (19)

This formula can of course only be used if the requirements
for its applicability are fulfilled. First of all, both the acid and
its conjugate base should emit upon return to their respective
ground states from excited states that persist long enough for
equilibrium to have been established prior to fluorescence or
phosphorescence. Secondly, ground-state and excited-state
polarisabilities should at least be approximately equal.

Another interesting corollary to the theory developed so
far follows after substitution ofEqs. (16)–(18)into Eq. (5),
leading to

�GFC

= −h
νa − νf

2

= − (�µ∗
p − �µp)

2

4πε0a3

×
(

ε′ − 1

2ε′ + 1 − 2α′(ε′ − 1)
− n2 − 1

2n2 + 1 − 2α′(n2 − 1)

)
(20)

which is obviously negative, as it should be, and applies to
both absorption and emission, as also indicated inFig. 2.
Hence, under the stated conditions and assumptions, the
Gibbs energy liberated during the spontaneous relaxation of
the solute–medium system from a Franck–Condon state is
simply proportional to the Stokes shift(ν̃a − ν̃f ) for the 0–0
transition under consideration.

To conclude this section, a comment concerning the con-
sequences of incomplete medium relaxation for the value of
pK∗

a, as obtained withEq. (19), is in order.
It must be remembered that premature fluorescence will

only invalidateEq. (17). In the most extreme case where no
medium reorganisation occurs at all,ν̃f coincides withν̃a.
For intermediate cases,ν̃f is always less thañνa, but higher
than the value predicted byEq. (17). Consequently,hc ¯̃ν will
always tend to overestimatew.

The errors introduced by substituting the experimentally
obtained values for̄̃νA and ¯̃νB into Eq. (19)will therefore
partially compensate each other, thereby mitigating the effect
on pK∗

a to some extent.

4. Discussion

The theory of excited-state acidity constants presented in
this paper hinges on a description of medium relaxation,
consequent upon electronic transitions, in terms of a classical
continuum model for the solvent. This treatment is in line
with that of solvatochromism, as it has been applied, with
varying success, to the determination of excited-state dipole
moments[17].

Other factors that, no doubt, contribute to the values of
absorption and emission frequencies are a dynamic red shift
[18], dispersion forces between solute and solvent[19], and,
sometimes, hydrogen bonding. These are usually considered
small with respect to electrostatic effects. In the present ap-
plication, which depends on the difference between two av-
erage frequencies, one pertaining to an acid, the other to its
conjugate base, such contributions are likely to cancel out
for the most part anyway.

The averaging of frequencies in the Förster equation (19)
had been advocated previously by some authors, but only
on semi-quantitative or intuitive grounds. The choice of fre-
quencies to be substituted in this equation (absorption-only,
emission-only, or averages) is rather critical, as the individ-
ual Stokes shifts and acid–base frequency gaps are often of
the same order of magnitude.

In Sections 2 and 3, a more rigorous quantitative approach
is taken, which also highlights the conditions under which
this procedure can be expected to give reasonable results.
First of all, acid and base should both be emitters with life-
times of the excited states exceeding the typical medium re-
laxation time. Whenever the latter requirement is not met, a
dynamic analysis based on, e.g., the Debye model for sol-
vent relaxation becomes necessary. Here, no attempt has
been made to allow for incomplete relaxation but in this
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case, again, some cancellation of errors can be anticipated,
as pointed out at the end ofSection 3. Secondly, it is essen-
tial for the applicability ofEq. (18) that polarisabilities of
ground and excited-state molecules or ions are practically
equal. If this is not the case, extra terms arise inEqs. (16)
and (17)that depend on the difference (α∗ − α), but which
do not appear in the corrected version ofEq. (15) [20].

An important feature ofEq. (19)is that it automatically
makes allowance for the fact that the acid–base pair is
present in an electrolyte solution at finite ionic strength,I.

To the lowest order, the electrolyte effect on the free en-
ergy of excitation,w, is proportional to (κa)2, and hence,
varies linearly withI, as may be verified by substitutingε′
from Eq. (8) into Eq. (15), and expanding the resulting ex-
pression in terms of the small parameterκa.

Although the electrolyte-induced shifts in wavelength are
usually very small (on the order of a few nanometers), the ef-
fect on pK∗

a can be substantial. For example, at a (gas-phase)
wavelength of 300 nm, a 4 nm shift already amounts to a
change by one log unit.

Yet another advantage of the present approach, com-
pared to most of the earlier treatments, is that the Förster
cycle is analysed directly in terms of free energy, rather
than enthalpy. In this way, one avoids the kind of needless
speculation regarding the values of standard molar dissoci-
ation entropies (�S̄0

a and�S̄0∗
a ) that seems to pervade the

literature on this topic[10].
As a matter of fact, the difference in standard entropy of

acid dissociation between ground and excited state is ob-
tained simply by taking the temperature derivative ofEq. (3),
after substitution ofEq. (18), as follows:

�S̄0∗
a − �S̄0

a = Lhc

(
∂( ¯̃νA − ¯̃νB)

∂T

)
p,I

(21)

whereL is Avogadro’s constant.
An explicit assumption in the derivation of the Förster

equation, as it is usually presented in the literature, is that
this difference can be taken to be equal to zero. According
to Eq. (21), the correctness of this assertion can be tested
by measuring the temperature dependence of¯̃νA and ¯̃νB.
However, we are really dealing with a non-problem here,
for, in caseEq. (19)does not produce the correct pK∗

a, this
should be attributed to factors unrelated to this issue, as has
been argued in this contribution.

Finally, it should be noted that the theory expounded in
this paper could also be applied, with minor modification,
to other types of excited-state dissociation processes or rear-
rangement reactions such as intramolecular proton transfer
[21].
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